The square surface shown in Fig. 23-30 measures 3.2 mm on a each side. It is immersed in a uniform electric field with magnitude E = 1800 N/C and with field lines at an angle of θ = 35° with the normal to the surface as shown. Take that normal to be directed "outward" as though the surface were one face of a box. Calculate the electric flux through the surface.

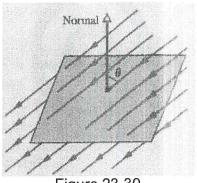


Figure 23-30

$$\phi = \vec{E} \cdot \vec{A} = E A \cos \theta$$

$$= \left(3.2 + 10^{3}\right)^{2} 1800 \cos 35^{\circ}$$

$$= -0.015 \, \text{m}^{2} \text{M/c} \right) \, \text{In ward Since}$$
the Normal is
assumed to be
out ward

Figure 23-35 shows a closed Gaussian surface in the shape of a cube of edge length 2.00 m, with one corner at $x_1 = 5.00$ m, $y_1 = 4.00$ m. The cube lies in a region where the electric field vector is given by $\mathbf{E} = -3.00 \, \mathbf{i} - 4.00 \, \mathbf{y}^2 \, \mathbf{j} + 3.00 \, \mathbf{k}$ N/C What is the net charge contained in the cube?

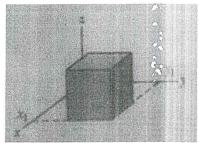


Figure 23-35

The electric field in a certain region of the Earth's atmosphere is directed vertically down. At an altitude of 300 m, the field has a magnitude of 60 N/C; at an altitude of 200 m, the magnitude is 100 N/C. Find the amount of charge contained in a cube 100 m on edge, with horizontal faces a altitudes of 200 and 300 m.

$$\oint_{\text{Neit}} = \frac{g_{\text{enc}}}{g_{\text{o}}}$$

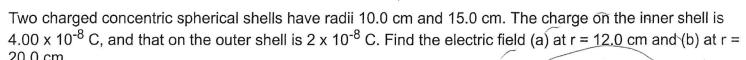
$$g_{\text{enc}} = \frac{g_{\text{enc}}}{g_{\text{o}}}$$

$$= A \cdot E_{1} - A \cdot E_{2}$$

$$= A \left(E_{1} - E_{2}\right) = (100)^{2} \left(100 - 60\right)$$

$$= A \left(E_{1} - E_{2}\right) = (100)^{2} \times 40$$

$$= 8,854 \times 10 \times 10$$


$$= 354 \times 10^{6}$$

$$= 3.54 \times 10^{6}$$

A long, straight wire has a fixed negative charge with a linear charge density of magnitude 3.6 nC/m. The wire is to be enclosed by a thin-walled nonconducting cylindrical shell of radius 1.5 cm. The shell is to have positive charge on its outside surface with a charge density σ that makes the net external electric field zero. Calculate σ

A = 2.51

$$A = 3.6 \text{ nc/m}$$
 $A = 1.5 \text{ cm}$
 $A = \text{charge on the wire} = 24$
 $A = \text{charge on the Cylinder} = 6 \times 1.4 \text{ Res}$
 $A = \text{charge on the Cylinder} = 6 \times 1.4 \text{ Res}$
 $A = 0 = 0 = 0$
 $A = 0 = 0$

a) 25 x12 N/2 (b) 15 - 12/2

$$E = \frac{Q_{1}}{4\pi \epsilon_{0}} (0,12)^{2}$$

$$= 2.5 \times 10^{3} \text{ M/c}$$

$$= 4 \times 10^{3} - 12(0.12)^{2}$$

$$= 41 \times 10^{3} \times 10^{3} \text{ M/c}$$

$$= 41 \times 10^{3} \times 10^{3$$

$$Q = \frac{20cm}{6\times10} = \frac{6\times10}{1\times554\times10^{12}(0.2)^2} = 1.35\times10^4 \text{ N/c}$$

$$E = \frac{6\times10}{4\pm8.854\times10^{12}(0.2)^2} = 1.35\times10^4 \text{ N/c}$$