PHYS 223 University Physics III Exam 2

February 12, 2020

Name T.C. Daly

1. Over a certain region of space, the electric potential is $V = x - y^2z + 5z^2$. Find expressions for the x, y, and z components of the electric field over this region. What is the magnitude of the field at the point P that has coordinates (-3.00, 1.00, 2.00) m?

rinal has coordinates (-3.00, 1.00, 2.00) m?	
a. E _x /	GRADES
b. Ey2 4 2	
c. Ez 42-102	92
d. Magnitude of E 19.1 V/M	90, 90
V= x+ 422+522	87
	74
Ex = - 3 = -1	79
Ey = - 24 = 242	
Ez = - 2V = y2-102	
$E = -x + 2yzy + (y^2 - 10z)z$	
E = -x + 0000 at $x = -3$, $y = 1$, $z = 3$	
== -x +29 - 19 =	
$ E = \sqrt{1 + (1+)^2} = \frac{19.1}{1}$	m
= \(\frac{366}{366} = \frac{19.10/m}{}	

PHYS 223 University Physics III

February 12, 2020

2. A charge Q is uniformily distributed on a thin wire. The wire is bent into a circular arc and two straight sections as shown in Figure 2.

What is the electric potential at the point P at the center of the arc?

Figure 2

$$dS = \gamma r d\theta$$

$$V_2 = \kappa \gamma \int \frac{V d\theta}{V} = \kappa \gamma \left[2\pi - \frac{\pi}{2} \right] = \kappa \gamma \frac{3\pi}{2}$$

$$V_2 = \kappa \gamma \int \frac{V d\theta}{V} = \kappa \gamma \left[2\pi L(2) + \frac{3\pi}{2} \right]$$

$$V = 2U_1 + V_2 = \kappa \gamma \left[2\pi L(2) + \frac{3\pi}{2} \right]$$

PHYS 223 University Physics III

February 12, 2020

3. What is the capacitance between the points \boldsymbol{a} and \boldsymbol{b} in

Figure 3?

Figure 3

