PHYS 223 University Physics III Exam 1

January 29, 2020

Name

point A at the positive charged plate and travels 0.500 cm and

strikes the negatively charged plate at point B.

Figure 1

when it strikes the negative plate? $\frac{3}{1.69 \times 10}$ $\frac{3}{1.69 \times 10}$

PHYS 223 University Physics III

January 29, 2020

2. A conducting sphere of radius a of 5.00 cm caries a charge of Q_1 C. A concentric spherical conducting conducting shell with an inner radius b of 10.00 cm and an outer radius c of 15.00 cm carries a charge of Q_2 C.

What is the Electric field for values of r from 0 to 20 cm?

	Figure 2
a. $r < 5 \text{ cm}$ $\frac{\text{den}(-7)}{\text{den}(-7)} = 0$	a = 5 cm b = 10 cm
b. 5 cm < r < 10 cm Pan = 01 : E = 4776212	c = 15 cm
c. 10 cm < r < 15 cm	CONDUCTOR
d. $r > 15 \text{ cm}$ $\overrightarrow{E} = \frac{Q_1 + Q_2}{4\pi E_0 \Gamma}$	

PHYS 223 University Physics III

January 29, 2020

3. There are three charges, Q located at the origin (0,0), a second charge Q located on the y axis at y = a m, and a third charge 2Q is located on the x axis at x = a m, as shown in Figure 3.

Figure 3

What is the force exerted on the charge 2Q located at x = a?

$$\vec{E} = \vec{E}, + \vec{E}$$

$$\vec{F} = 2 \vec{Q} \vec{E}$$

$$\vec{E}_{1} = \frac{2}{4\pi\epsilon_{0}} \vec{a}^{2} \qquad (\hat{x} - \hat{y})$$

$$\vec{E}_{2} = \frac{2}{4\pi\epsilon_{0}} \vec{a}^{2} \qquad (\hat{x} - \hat{y})$$

$$\vec{E}_{3} = \frac{2}{4\pi\epsilon_{0}} \vec{a}^{2} \qquad (\hat{x} - \hat{y})$$

$$\vec{E}_{1} = \frac{2}{4\pi\epsilon_{0}} \vec{a}^{2} \qquad (\hat{x} - \hat{y})$$

$$\vec{E}_{1} = \frac{2}{4\pi\epsilon_{0}} \vec{a}^{2} \qquad (\hat{x} - \hat{y})$$

$$\vec{E}_{2} = \frac{2}{4\pi\epsilon_{0}} \vec{a}^{2} \qquad (\hat{x} - \hat{y})$$

$$\vec{E}_{3} = \frac{2}{4\pi\epsilon_{0}} \vec{a}^{2} \qquad (\hat{x} - \hat{y})$$

$$\vec{E}_{4} = \frac{2}{4\pi\epsilon_{0}} \vec{a}^{2} \qquad (\hat{x} - \hat{y})$$

$$\vec{E}_{3} = \frac{2}{4\pi\epsilon_{0}} \vec{a}^{2} \qquad (\hat{x} - \hat{y})$$

$$\vec{E}_{4} = \frac{2}{4\pi\epsilon_{0}} \vec{a}^{2} \qquad (\hat{x} - \hat{y})$$

$$\vec{E}_{5} = \frac{2}{4\pi\epsilon_{0}} \vec{a}^{2} \qquad (\hat{x} - \hat{y})$$

$$\vec{E}_{7} = \frac{2}{4\pi\epsilon_{0}}$$

Physical Constants

Constant	Symbol	Magnitude	
Avogadro's Number	N _A	6.022 x 10 ²³ molecules/mole	
Boltzmann's constant	k	$1.38 \times 10^{-23} \text{ J/K} = 8.62 \times 10^{-5} \text{ eV/K}$	
Stefan-Boltzmann constant	σ	5.67x10 ⁻⁸ J/(s*m ² *K ⁴)	
Electronic charge	q	1.6 x 10 ⁻¹⁹ C	
Electronvolt	eV	1.6 x 10 ⁻¹⁹ J	
Planks constant	h	6.625 x 10 ⁻³⁴ J-s	
Thermal voltage, kT, at 300 °K	V _t	25.8 mV	
Velocity of light	С	3 x 10 ⁸ m/s	
Permeability of free space	u _o	1.257 x 10 ⁻⁶ H/m	
Permittivity of free space	ε ο	8.854 x 10 ⁻¹² F/m	
Electron mass	m _e	9.1 x 10 ⁻³¹ kg	
Proton mass	m _p	1.673 x 10 ⁻²⁷ kg	

Atomic Masses

Element	Symbol	Atomic Mass	Atomic Number
Hydrogen	Н	1.00794 u	1
Helium	He	4.00260 u	2
Lithium	Li	6.941 u	3
Beryllium	Ве	9.0122 u	4
Boron	В	10.811 u	5
Carbon	С	12.0107 u	6
Nitrogen	N	14.0067 u	7
Oxygen	0	15.9994 u	. 8
Fluorine	F	18.9984 u	9
Neon	N	20.1797 u	10
Sodium	Na	22.9897 u	11
Magnesium	Mg	24.305 u	12 ~
Aluminum	Al	26.9815 u	13
Silicon	Si	28.0855 u	14
Phosphorus	Р	30.9738 u	15