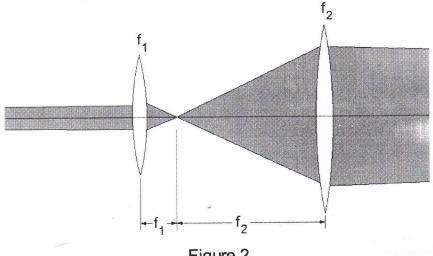
14.15 Given that a ruby laser operating at 694.3 nm has a frequency bandwidth of 50 MHz, what is the corresponding linewidth?

$$C = \lambda + \frac{1}{2}$$

$$\lambda = \frac{1}{4}$$


$$C = \frac{1}{4$$

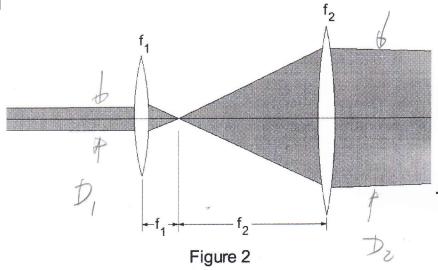
14.16 Determine the frequency difference between adjacent axial resonant cavity modes for a typical gass laser 25 cm long (n = 1).

L.1 A He-Ne laser beam with an angle of divergence of 0.5 mrad is fucused to a spot using a convex lens with a 5 cm focal length. What is the diameter of the spot?

 $D = + \phi_1 = 5 \times 10^2 * 0.5 \times 10^3 = 2.5 \times 10^5 \text{m}.$

- L.2 The beam expander shown in Figure 2 is used to expand a laser beam with a diameter of 1.2 mm a 0.80 mrad angle of divergence. $f_1 =$ $1.2.\text{cm. } f_2 = 18.0 \text{ cm.}$
 - a. What is the diameter of the beam produced by the expander?
 - b. What is the resulting divergence angle of the beam? .

$$D_{z} = \frac{f_{z}}{f_{i}} D_{i}$$


$$= \frac{18 \times 1.2}{1.2} = 18 \text{ mm} = 1.8 \text{ cm}$$

$$D_{z} = \frac{f_{i}}{f_{i}} D_{i}$$

$$D_{z} = \frac{f_{z}}{f_{z}} D_{i}$$

$$D_{z} = \frac{18 \times 1.2}{f_{z}} = 0.053 \text{ m/ad}$$

L.3 Design a beam expander that will transform a laser beam with a 0.75 mrad angle of divergence and a 2 mm spot size into a 1.0 cm diameter beam.

$$\frac{f_2}{f_1} = \frac{D_2}{D_1} = \frac{lon}{0.2cm} = 5$$

OTHER VALUES of 7, & 72 WILL WORK